HFPaC: GPU friendly height field parallel compression
نویسندگان
چکیده
In this paper, we present a novel method for fast lossy or lossless compression and decompression of regular height fields. The method is suitable for SIMD parallel implementation and thus inherently suitable for modern GPU architectures. Lossy compression is achieved by approximating the height field with a set of quadratic Bezier surfaces. In addition, lossless compression is achieved by superimposing the residuals over the lossy approximation. We validated the method’s efficiency through a CUDA implementation of compression and decompression algorithms. The method allows independent decompression of individual data points, as well as progressive decompression. Even in the case of lossy decompression, the decompressed surface is inherently seamless. In comparison with the GPU-oriented state-of-the-art method, the proposed method, combined with a widely available lossless compression method (such as DEFLATE), achieves comparable compression ratios. The method’s efficiency slightly outperforms the state-of-the-art method for very high workloads and considerably for lower workloads.
منابع مشابه
Digital Compression on Gpu
There has been a great progress in the field of graphics processors. Since, there is no rise in the speed of the normal CPU processors; Designers are coming up with multi-core, parallel processors. Because of their popularity in parallel processing, GPUs are becoming more and more attractive for many applications. With the increasing demand in utilizing GPUs, there is a great need to develop op...
متن کاملDCT Implementation on GPU
There has been a great progress in the field of graphics processors. Since, there is no rise in the speed of the normal CPU processors; Designers are coming up with multi-core, parallel processors. Because of their popularity in parallel processing, GPUs are becoming more and more attractive for many applications. With the increasing demand in utilizing GPUs, there is a great need to develop op...
متن کاملImplementation of the direction of arrival estimation algorithms by means of GPU-parallel processing in the Kuda environment (Research Article)
Direction-of-arrival (DOA) estimation of audio signals is critical in different areas, including electronic war, sonar, etc. The beamforming methods like Minimum Variance Distortionless Response (MVDR), Delay-and-Sum (DAS), and subspace-based Multiple Signal Classification (MUSIC) are the most known DOA estimation techniques. The mentioned methods have high computational complexity. Hence using...
متن کاملTrie Compression for GPU Accelerated Multi-Pattern Matching
Graphics Processing Units (GPU) allow for running massively parallel applications offloading the Central Processing Unit (CPU) from computationally intensive resources. However GPUs have a limited amount of memory. In this paper, a trie compression algorithm for massively parallel pattern matching is presented demonstrating 85% less space requirements than the original highly efficient parallel...
متن کاملAnalysis of Lossy Hyperspectral Image Compression Techniques
Graphics Processing Units (GPU) are becoming a widespread tool for general-purpose scientific computing, and are attracting interest for future on board satellite image processing payloads due to their ability to perform massively parallel computations. This paper describes the GPU implementation of an algorithm for on board loss hyper spectral image compression and proposes an architecture tha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- GeoInformatica
دوره 17 شماره
صفحات -
تاریخ انتشار 2013